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I. Introduction

In its June 1999 consultative paper and subsequent public statements, the Basle
Committee on Bank Supervision identified several key objectives for reform of bank
regulatory capital.  First and foremost, regulatory capital charges at the asset level must be
aligned more closely with underlying risk.  The failure of the 1988 Basle Accord to distinguish
among assets of very different degrees of credit risk created the incentive to move low-risk
assets off balance sheet.  The financial innovations which arose in response to this incentive
have undermined the effectiveness of regulatory capital rules (see, e.g., Jones, 2000) and thus
led to current efforts towards reform.  Second, as an international framework, the Accord
should be able to accommodate a significant degree of diversity across banks in sophistication
and business mix,  and should be applicable across a variety of national supervisory and
accounting regimes.  Third, it must be feasible for supervisors to validate with reasonable
confidence all significant inputs supplied by the bank.  Finally, the Accord must be made more
flexible in order to evolve with the state of best practice in risk management.

At present, it appears that a reformed Accord will be a risk-bucketing system of one
form or another.  In such a system, banking book assets are grouped into “buckets” which are
presumed to be homogeneous.  Associated with each bucket is a fixed capital charge per dollar
of exposure.  At a minimum, one would expect the bucketing system to partition assets by
borrower rating, which would be externally given by rating agencies under some proposals and
internally assigned under others; and by one or more proxies for seniority/collateral type,
which determines loss severity in the event of default.  More complex systems would partition
assets by maturity, country/industry of borrower, and perhaps other characteristics.  Regardless
of the sophistication or fineness of the bucketing scheme, capital charges are portfolio-
invariant, i.e., the capital charge on a given asset depends only on its own characteristics, and
not the characteristics of the portfolio in which it is held.  I take portfolio-invariance to be the
essential property of risk-bucket capital rules.



1. In an industry practitioner response to the Basle consultative paper, GARP (1999)
acknowledges the obstacles to immediate adoption of an internal models regulatory regime,
but argues that the challenges can be met through an evolutionary, piecemeal approach to
regulatory certification of model components.

2

For regulatory purposes, risk-bucketing rules offer some significant advantages.  The
current Accord is itself a simple risk-bucketing framework.  The reformed Accord could
introduce additional bucketing criteria and make better use of information in borrower ratings,
yet still be viewed as a natural extension of the current regime.  Because the capital charge for
a portfolio is simply a weighted sum of the dollars in each bucket, risk-bucketing systems are
relatively simple to administer and do not impose complex reporting requirements.  Validation
problems are also limited in scope.  Should the use of internal ratings be permitted, the most
significant empirical challenge facing supervisors would likely concern the quality of default
probability estimates for internal grades.  Finally, risk-bucketing systems are widely used
today in bank RAROC systems, even at many institutions which use more sophisticated
approaches for portfolio management.

A much-discussed alternative to risk-bucketing would base regulatory capital on output
from banks’ internal value-at-risk (“VaR”) models.  Under the VaR paradigm, an institution
holds capital in order to maintain a probability of survival over some fixed horizon (say, one
year) at a targeted level (say, 99.9%).  To be consistent with its target (denoted q), the
institution must hold reserves and equity sufficient to cover up to the qth quantile of the
distribution of portfolio loss over the horizon.  The purpose of the model is to estimate the
portfolio loss distribution from a parsimonious set of asset characteristics.

In order to obtain a portfolio loss distribution, a model must generate a joint
distribution over credit losses at the asset level.  The latest generation of widely-used models
gives structure to this problem by assuming that correlations across borrowers in credit events
arise due to common dependence on a set of systematic risk factors.  Implicitly or explicitly,
these factors represent the sectoral shifts and macroeconomic forces that impinge to a greater
or lesser extent on all firms in an economy.  A natural property of these models is that the
marginal capital required for a loan depends on how it affects diversification, and thus depends
on what else is in the portfolio.

The Basle Committee undertook a detailed study (1999a) of how internal models might
be used for setting regulatory capital.  The Committee acknowledged that a carefully specified
and calibrated VaR model can deliver a more accurate measure of portfolio credit risk than any
risk-bucketing system, but found that the present state of model development could not ensure
an acceptable degree of comparability across institutions and that data constraints prevent
validation of key model parameters and assumptions.1  It seems unlikely, therefore, that
regulators will be prepared in the near- to medium-term to accept the use of internal models for
setting regulatory capital. Nonetheless, regulators and industry practitioners appear in broad
agreement that the new Accord should permit evolution towards an internal models approach
as models and data improve.

This paper seeks to facilitate the evolution from risk-bucketing to internal models by
asking whether and how it might be possible to derive risk-bucket capital rules within a well-
specified risk-factor model.  From a technical point of view, this is equivalent to asking: Under
what assumptions does a risk-factor model yield portfolio-invariant marginal contributions to



2. In CreditRisk+ it is assumed that X is gamma-distributed.  For the purposes of this paper, I
need only assume it has known distribution on �+.
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(1)

value-at-risk?  In Section II, I show within one widely-used VaR model that there are two
necessary and sufficient conditions:
1. the portfolio must be asymptotically fine-grained, in the sense that no exposure in the

portfolio can account for more than an arbitrarily small share of total portfolio
exposure; and

2. there must be only a single systematic risk factor.  
Extensions and implications of this results are discussed in Section III.

II. Asymptotic properties of a simple model

The essential intuitions behind the results of this paper are most easily conveyed in the
context of a simple actuarial model of credit risk.  Under an actuarial, or book value, definition
of loss, credit loss arises only in the event of borrower default.  Change in market value due to
rating downgrade or upgrade is ignored.  An especially tractable actuarial model is Credit
Suisse Financial Products’ CreditRisk+.  In this section, I derive my results within a somewhat
generalized version of this widely-used model.  

A fundamental concept in CreditRisk+, as in any risk factor model, is the distinction
between unconditional and conditional event probabilities.  A borrower's unconditional
probability of default (“PD”), also known as its expected default frequency, is the probability
of default before a specified horizon given all information currently observable.  The
conditional default probability is the PD we would assign the borrower if we also knew what
the realized value of the systematic risk factors at the horizon would be. The unconditional PD
is the average value of the conditional default probability across all possible realizations of the
systematic risk factors.

To gain some intuition for this terminology, consider a simple credit cycle in which the
systematic risk factor takes only three values.  The “bad state” corresponds to a recession at
the risk horizon, the “good state” to an expansion, and the “neutral state” to ordinary times. 
Say that we currently are in a neutral state, and assign probabilities of ¼, ½ and ¼ to the three
states (respectively) at the risk horizon. Consider a borrower who defaults with probability 2%
in the event of a bad state, probability 1% in the neutral state, and probability 0.4% in the event
of a good state.  The “conditional default probability” is then 0.4%, 1%, or 2%, depending on
which state we condition upon. The PD is the probability-weighted average of these values, or
1.1%.

Let X denote the systematic risk factors and x denote a realization of X.  In the general
case, X is multivariate, but for the time being I assume it is univariate.  It is assumed that X is
positive-valued with mean one and variance �2.2 Conditional on X, the portfolio's remaining
credit risk is assumed to be idiosyncratic to the individual borrowers.  Let pi(x) denote the
probability of default for borrower i conditional on X=x. In CreditRisk+, this is specified as



3. This is without loss of generality.  Under actuarial treatment of loss, multiple loans to a
single borrower may be aggregated into a single loan without affecting the results.

4. If we allowed for unused lines of credit in the portfolio, then Ai would be the amount which
would be drawn in the event of default.  In practice, this might be difficult to estimate ex-ante.
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(2)

where p�i denotes the PD for borrower i. Note that E[pi(X)]=p�i as required.  Across the
portfolio, the systematic factor pushes default probabilities above (below) their expected
values when its realization is higher (lower) than its expected value, and thereby generates
correlations in defaults. The sensitivity of borrower i to X is determined by the size of the
factor loading wi�[0,1].  See CSFP (1997) and Gordy (2000a) on the CreditRisk+ model and
on its relationship to The RiskMetrics Groups’ CreditMetrics model. 

Imagine that the bank selects its portfolio as a large but finite subset of an infinite
sequence of “potential” term loans, each to a unique borrower.3  Let Ai denote the book value,
or exposure, on the loan to borrower i.4  To guarantee that idiosyncratic risk vanishes as more
assets are added to the portfolio, it is necessary to place bounds on the Ai. For simplicity of
exposition, I impose:

Assumption 1: Exposure sizes are bounded in some interval [Amin, Amax], where Amin>0 and Amax

is finite.

A much less restrictive assumption could be substituted; see Gordy (2000b) for an alternative. 
It is necessary only to prevent the Ai from blowing up too quickly toward infinity or shrinking
too quickly towards zero.

Let Di be a default indicator; i.e., Di is a random variable with value 1 if borrower i
defaults and value 0 otherwise. Loss given default (“LGD”) by borrower i is a fraction �i of
book value.  Although CreditRisk+ assumes that �i is fixed and known ex-ante, I allow for risk
in LGD which is idiosyncratic to the borrower.  Let ��i denote the expected value of �i.

For a portfolio of the first n borrowers, define the portfolio loss rate Ln as the ratio of
total losses to total portfolio exposure, i.e.,

Our first asymptotic result is:

Proposition 1: Conditional on X=x, Ln-E[Ln|x]�0, almost surely.

The result is essentially a corollary of a strong law of large numbers.  Proof is given in the
Appendix.  Note that there is no restriction on the relationship between the exposure size for a
facility and its quality (as measured by its PD or LGD parameters), so, for example, there is no
problem if larger loans tend to be of higher or lower quality than smaller loans.
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In intuitive terms, Proposition 1 says that as the exposure share of each asset in the
portfolio goes to zero, idiosyncratic risk in portfolio loss is diversified away perfectly.  In the
limit, the loss rate converges to a fixed function of the systematic factor X. I refer to this
limiting portfolio as “asymptotically fine-grained.”  An implication is that, in the limit, we
need only know the unconditional distribution of E[Ln|X] to answer questions about the
unconditional distribution of Ln. In particular, I next demonstrate that this applies to tail
quantiles of the distribution of Ln, i.e., to value-at-risk.

One convenient property of the CreditRisk+ framework is the linear form for the
conditional expected value of the portfolio loss rate, which can be written as

where 

The linear form allows us to decompose expected loss under any realization of the systematic
factor X into two components, the unconditional expected loss (which is assumed to be
covered by the loan loss reserve) and a systematic-risk loss to be covered by capital.

For the problem to be interesting, we need to bound �n>0 as n��.  If the expected
LGDs, PDs or factor loadings were to converge to zero, then in the limit the conditional
expectation E[Ln|x] would converge to the unconditional expectation E[Ln] for all x.  No capital
would be required beyond loan loss reserves.  A minimally restrictive way to bound �n

asymptotically is to impose:

Assumption 2: There exists a constant �>0 and finite integer M such that �n>0 there is at least
one i in the set {n,n+1,...,n+M} for which ��ip�iwi��.

It is straightforward to show that Assumptions 1 and 2 together guarantee that for large enough
n, �n>�_��Amin/(Amin+MAmax)>0.  This leads to the main result of this paper.  Letting xq denote
the qth quantile of the distribution of X, we have

Proposition 2: As n��, Pr(Ln�E[Ln|xq])�q.

Proof is given in the Appendix.  Under the single risk-factor assumption, this  proposition
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implies a simple rule for setting required capital for an asymptotically fine-grained portfolio. 
To reduce the probability of insolvency to 1-q, the bank must hold E[Ln|xq] in reserves and
capital.  Assuming expected loss is covered by the loan loss reserve, then, by equation (3),
capital must equal �n(xq-1) per dollar of total exposure.  Because �n can be expressed as a sum
of asset-level terms, the capital requirement can be implemented at the asset level by setting
the capital charge for loan i to ��ip�iwi(xq-1) per dollar of exposure to i.  This “asymptotic capital
charge” depends only on the assumed distribution of the systematic risk factor and on
characteristics of loan i.  Beyond the requirement that the portfolio be asymptotically fine-
grained (and the technical restrictions of Assumptions 1 and 2), it imposes no restriction on the
make-up of the remainder of the portfolio, and is therefore portfolio-invariant.

Proposition 2 demonstrates the sufficiency of the single risk factor assumption to
deliver portfolio-invariant capital charges in an asymptotic portfolio.  The necessity of both the
single factor assumption and asymptotic granularity can also be demonstrated. Asymptotic
granularity is required because, for any fixed n, idiosyncratic risk is not fully diversified. 
Consider the case of a homogeneous portfolio.  The {�n} are constant across n, so the variance
of the portfolio loss rate can be written as

The marginal contribution of the nth loan to the variance of the loss rate depends on n, and thus
its marginal contribution to the quantiles of the loss rate distribution must in general depend on
n as well.  In the case of a finite heterogeneous portfolio, the marginal contribution of an asset
to portfolio VaR depends in a complex manner on the size and composition of the rest of the
portfolio.  Therefore, no finite portfolio can support portfolio-invariant capital charges.

The single risk factor assumption also is unavoidable.  Say that there were two
independent systematic risk factors, X1 and X2, each gamma-distributed with mean one and
variance �2.  To keep the example simple, assume the portfolio has only two types of loans. 
Each type has the same exposure size, PD and expected LGD.  Type 1 has factor loading w on
X1 and zero on X2, and Type 2 has factor loading zero on X1 and w on X2.  Assume that, as the
portfolio grows, the ratio of m Type 2 loans to one Type 1 loan remains fixed.  The proof of
Proposition 1 does not require that X be univariate, so its holds for this two-factor world as
well.  Therefore, as n��, Ln converges in distribution to E[L
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|X], which can be written as

When m=0, there is effectively only one risk factor, so the appropriate asymptotic capital
charge per dollar exposure for Type 1 is the same as in the single factor case.  When m=1, it
can be shown that (X1+mX2)/(m+1) is itself gamma-distributed with mean one and variance
�2/2.  Quantiles of the loss rate distribution therefore can be calculated as if there were a single
systematic factor with variance �2/2.  The asymptotic capital charge per dollar exposure is the
same for the two loan types (because of the symmetry when m=1), and is lower than the capital
charge to Type 1 in the m=0 case.  As m increases, the systematic risk in the portfolio is



5. An important technical restriction is that conditional expected credit loss for each possible
bank asset is monotonic in the realization of the systematic factor.  Put another way, there can
be no hedging assets in the banking book.
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increasingly dominated by factor X2 relative to X1, so the asymptotic capital charge increases
for Type 2 loans and decreases for Type 1 loans.  The intuition readily generalizes to
heterogeneous portfolios in more complex settings. Whenever there are multiple risk factors,
the contribution of a given loan to portfolio VaR depends on whether the systematic risk
associated with the borrower diversifies or further concentrates the systematic risk associated
with other borrowers in the portfolio.  Therefore, the appropriate asymptotic capital charge for
the loan must depend on what else is in the portfolio.

III. Implications and Extensions

The results of this paper can be generalized significantly.  In place of CreditRisk+,
Gordy (2000b) shows that one can use any risk-factor model of portfolio credit risk, including
multi-state mark-to-market models.  We can allow for systematic risk in loss given default as
well.  Apart from minor technical restrictions, it is always the case that risk-factor VaR models
yield portfolio-invariant capital charges if and only if (a) there is only a single systematic risk
factor,5 and (b) bank portfolios are asymptotically fine-grained (i.e., no exposure accounts for
more than an arbitrarily small portion of total exposure).

The methods and conclusions presented here should not be unfamiliar to industry
practitioners.  Large-sample approximations  have previously been applied to homogeneous
portfolios under   actuarial single factor versions of The RiskMetrics Group’s CreditMetrics
and KMV Portfolio Manager in order to obtain computational shortcuts (see Finger, 1999, and
Vasicek, 1997, respectively).  At a presentation in September 1999, Tom Wilde of Credit
Suisse Financial Products used similar ideas to motivate a proposed “systematic risk
contributions” approach to regulatory capital.

There are several implications for current efforts to reform the Basle Accord.  First, it is
indeed possible to make a risk-bucketing approach consistent with restricted versions of any of
today’s leading models of portfolio value-at-risk.  Doing so would likely benefit the long-term
goal of evolving towards models-based calculation of regulatory capital.  For the near-term,
the asymptotic single-factor approach offers an internally consistent framework within which
to calibrate risk-bucket capital charges.  In contrast to judgement-based approaches, a
well-specified model gives regulators and banks a starting point for objective discussion of the
sources of portfolio credit risk and the empirical basis for the levels of capital charges.

Second, this analysis suggests that “risk-bucketing” is something of a misnomer. 
Grouping assets into relatively homogeneous buckets might be convenient from an
administrative point of view, but is not necessary for calibration of capital charges.  Even if we
assign default probabilities, factor loadings and expected recovery rates on a continuum of
values, capital charges are portfolio-invariant in the asymptotic limit.  In particular, it should
be noted that there is no need for the number of assets to be very large in each bucket, but only
in the portfolio as a whole.
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Finally, even though no bank can have an infinite number of loans, the asymptotic
nature of the results does not diminish their practical usefulness.  As portfolios grow larger, the
discrepancy between an asset’s appropriate marginal capital charge and its asymptotic capital
charge diminishes to zero.  Gordy (2000b) shows that VaR is well-approximated by its
asymptotic value for reasonably-sized homogeneous portfolios.  From an empirical point of
view, the need to assume a single systematic risk factor is a more serious concern, because, in
effect, it imposes a monolithic global business cycle on all borrowers.  By assumption, all
other credit risk is strictly idiosyncratic to the borrower. In reality, the global business cycle is
a composite of many small economic changes, which might be tied to geography (e.g.,
political shifts, natural disasters) or to prices of production inputs (e.g., oil, metals).  A single
factor model cannot capture any clustering of firm defaults due to common sensitivity to these
smaller-scale components of the global business cycle.  Holding fixed the state of the global
economy, a local recession in, for example, Spain is permitted to contribute nothing to the
default rate of Spanish borrowers.  If there are indeed pockets of risk, then calibrating a single
risk factor model to a broadly diversified bank may significantly understate the capital needed
to support a regional or specialized lender.

Appendix

Proof of Proposition 1 requires a version of the strong law of large numbers for a
sequence {Yn} of random variables and a sequence {an} of positive constants.  Let V[Y] denote
the variance of Y.  

Lemma 1: If an	� and , then

Proof is given by Petrov (1995), Theorem 6.7.

To apply to Proposition 1, let Yn=�nAnDn and let . In economic terms, Yn is

the dollar amount lost on borrower n and an is the total exposure to the first n borrowers. 

Assumption 1 guarantees that an	�.  To show that , note that �nDn�[0,1]

implies V[�nDn]<1, so

where the second inequality follows from Assumption 2, and the final inequality can be



6. I am grateful to Darrell Duffie for suggesting this line of argument.
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(9)

(10)

(11)

(12)

(13)

checked using the integral test for series convergence.  The conditions of Lemma 1 are

therefore satisfied.  The loss ratio Ln is equal to  so Proposition 1 is proved.

I next prove Proposition 2.6  For n sufficiently large, �n is bounded above zero, which
guarantees that

Equation (9) implies that Pr(Ln�E[Ln|xq])�q if and only if Pr(Ln�E[Ln|xq])-
Pr(E[Ln|X]�E[Ln|xq])�0.  This difference in probabilities can be re-written as 

where 1{statement} denotes the indicator function which equals 1 if statement is true and 0
otherwise.  The difference in indicator functions in Zn is nonzero only under two
circumstances, (a) if Ln�E[Ln|xq] and E[Ln|X]>E[Ln|xq], or (b) if Ln>E[Ln|xq] and E[Ln|X]�
E[Ln|xq].  Treating case (a) first, observe that

Almost sure convergence implies convergence in probability (see White, 1984, Theorem 2.24),
so we have by Proposition 1 that

for all X>xq as n��, which implies that
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(14)

Using exactly the same argument, we obtain

as well.  Together, equations (13) and (14) imply that Zn�0 as n��.  By the dominated
convergence theorem (see Billingsley, 1995, Theorem 16.4), the expression in equation (10)
also must converge to zero, which completes the proof.
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